#### Integrated PV & Buildings, Infrastructure and water in The Netherlands

**Zeger Vroon**, Joost Rijkers, Michiel Ritzen and Alex Masolin

Technical Chamber Cultural Center

Nicosia, Cyprus, November 2, 2018

## Outline

#### Introduction

•The Netherlands & Energy transition

•Status of PV in The Netherlands

#### **Integration PV**

- •Buildings (roof, facade, window)
- Infrastructure /water
- •IEA Task

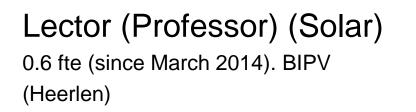
## Who is Zeger Vroon?

• Master: (86-90)

#### Chemistry

Universiteit Utrecht/Technical University Hannover (Storage) Phosphors (A. Meijerink and G. Blasse)

• Ph.D (91-95)


#### Chemical Engineering

Technical University Twente/Worcester(USA) Sol-gel synthesis and transport properties of zeolite membranes

• TNO (95-?)

Inorganic Chemistry Optical coatings 0.4 fte (Eindhoven→ Geleen)

• Zuyd (10-?)



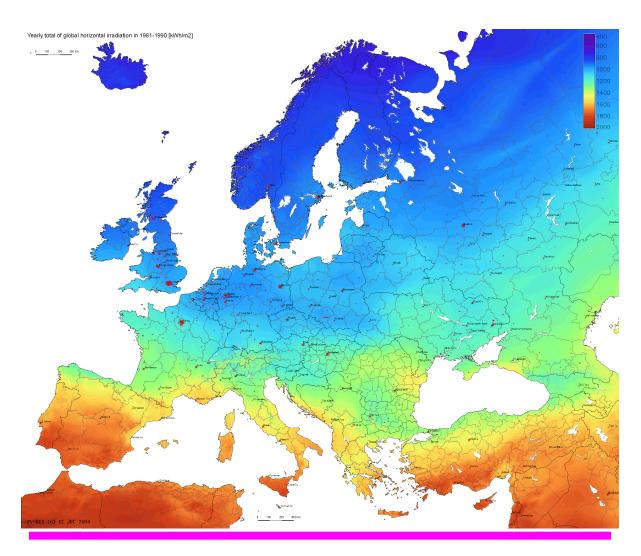


ΖU

#### **The Netherlands**



### **The Netherlands**


- Area:  $41.500 \text{ km}^2$
- Population
- Population density

(120x350 km) 17.200.000 425/km<sup>2</sup>

• Climate

Cfb

### Europe



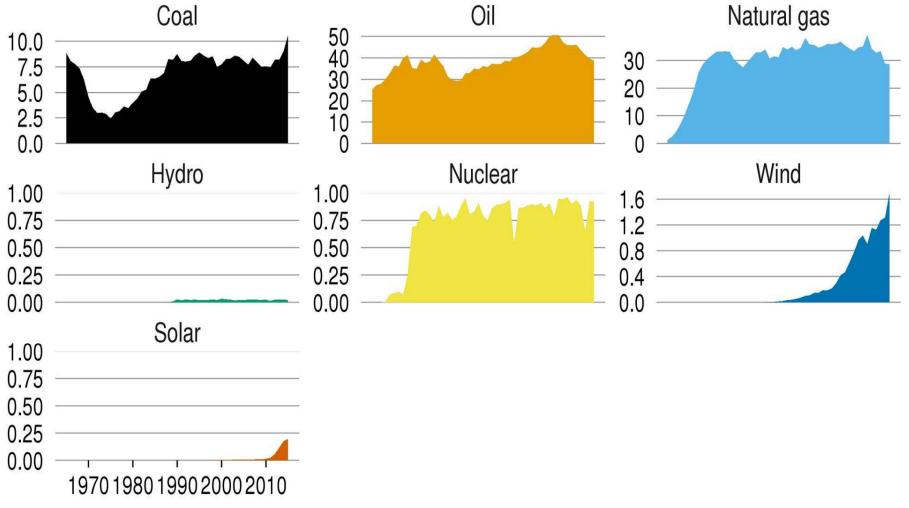
| PV generation<br>cost (€/kWh) |
|-------------------------------|
| 0.83                          |
| 0.50                          |
| 0.36                          |
| 0.28                          |
|                               |

insolation map: Šúri M., Huld T.A., Dunlop E.D. Ossenbrink H.A., 2007. Potential of solar electricity generation in the European Union member states and candidate countries. <u>Solar Energy</u> (in press), http://re.jrc.ec.europa.eu/pvgis/

W. Sinke, [3]

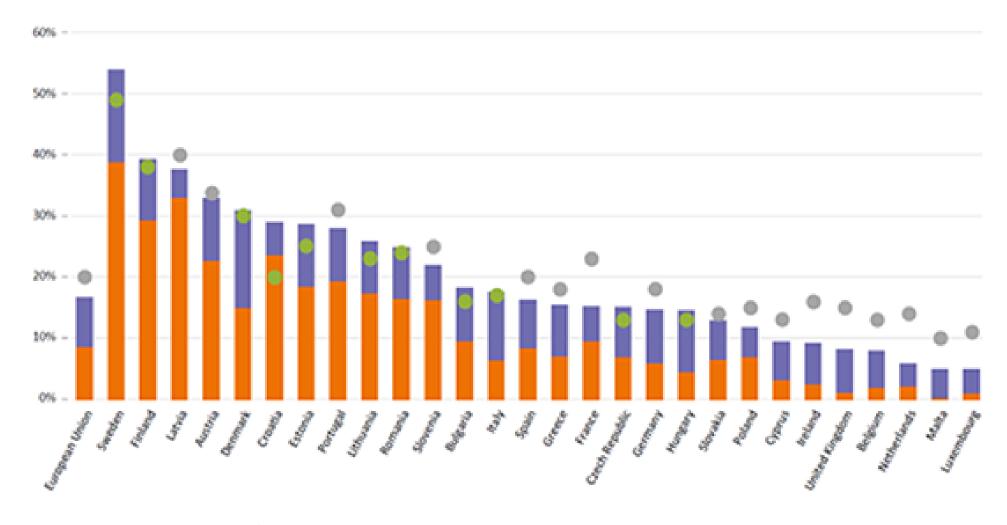
#### The Netherlands

- We have not a lot of space for the energy transition (integration)
- Integrate with built environment, infrastructure, water.

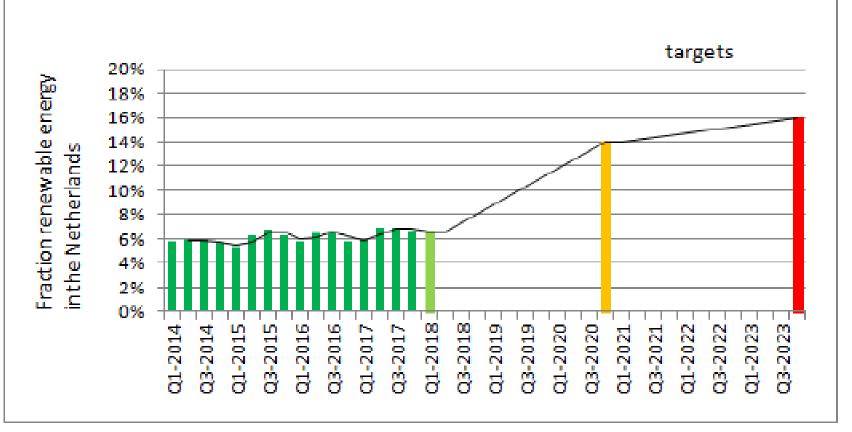

ΖU

YD

Not a lot of space for PV fields


#### The changing energy mix of Netherlands

Primary energy consumption (Mtoe/year) (1965-2015)




Data: BP Statistical Review of World Energy 2016 Figure: robert.wilson@strath.ac.uk Note: Covers all energy uses including electricity, heating and transport. Does not include bioenergy

## The Netherlands Energy transition (2017)



# Renewable energy (2018, targets)



#### The Netherlands

- High population density /good agriculture ground
   →Not a lot of space for energy transition →
   →Low amount PV fields
- Gas problem Groningen

 $\rightarrow$ We have a big job to do in the Netherlands

ΖU

ΥD

## Integration

- Buildings (BIPV)
   Roof, Facade and Window
- Infrastructure (IIPV)
   Solaroad and Noise barriers
- PV onto water (WIPV)
   Floating PV

# Status PV in the Netherlands (2017/2050)

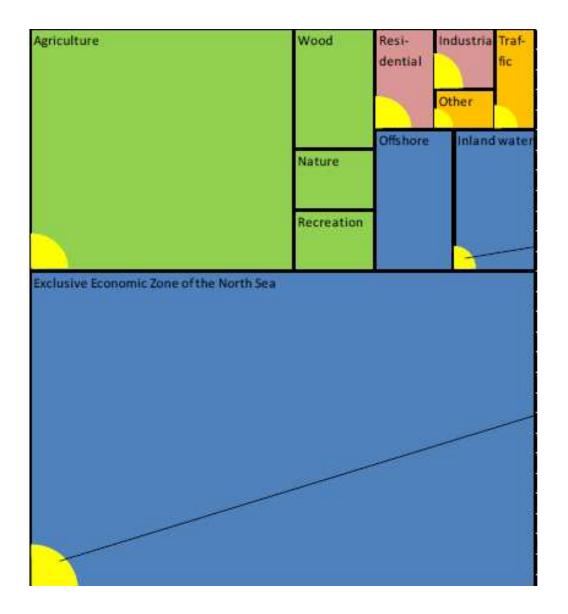
| Туре                | 2017<br>(GWp)   | 2050 (Expected)<br>(GWp) [1] |
|---------------------|-----------------|------------------------------|
| PV Fields           | 0.1             | 45                           |
| PV & Buildings      | 2.4             | 90                           |
| PV & Infrastructure | 0.05            | 33                           |
| PV & water          | 0               | 69                           |
| Other               | 0               | 1                            |
| Total               | 2.55 (0.3-0.4%) | 237 (20-30 %)                |

SEAC report, (2017) [1]

#### **PV in The Netherlands (2017)**

- Small amount of PV fields (< 5 %)
- BAPV (>95%)
- BIPV and other integrations (< 3%)




#### **The Netherlands**

| Agricultural | Forest     | Resi-    | Indu  | JS-    | Traf- |
|--------------|------------|----------|-------|--------|-------|
| 2000 km2     | 3500 km2   | dential  | trial | L      | fic   |
|              |            | 2500 km2 | 900   | km2    |       |
|              |            |          | Oth   | er     | 1200  |
|              |            |          | 900   | km2    | km2   |
|              |            | Offshore |       | Inland | water |
|              | Nature     | 4000 km2 |       | 4000 k | m2    |
|              | 1500 km2   |          |       |        |       |
|              |            |          |       |        |       |
|              | Recreation |          |       |        |       |
|              | 1000 km2   |          |       |        |       |
|              |            |          |       |        |       |

00 km2

[1] SEAC, report, (2017)

#### **The Netherlands in 2050**



[1] SEAC, report, (2017)

#### **PV fields**

- No  $\rightarrow$  in fields
- Yes → Areas that can not be used for other functions (along highways, industrial areas, waste mountains, etcetra)

ΖU

YD

## The Netherlands (Vision)

- PV fields → limited and/or only on not usable sites.
- BAPV  $\rightarrow$  Good, non esthetical (windmill)

ΖU

YD

• BIPV  $\rightarrow$  Important product



### **BAPV & BIPV**

Two main techniques for PV in the building environment.





Built Applied PV

#### Built Integrated PV

ZU

YD

### **Definition BIPV**

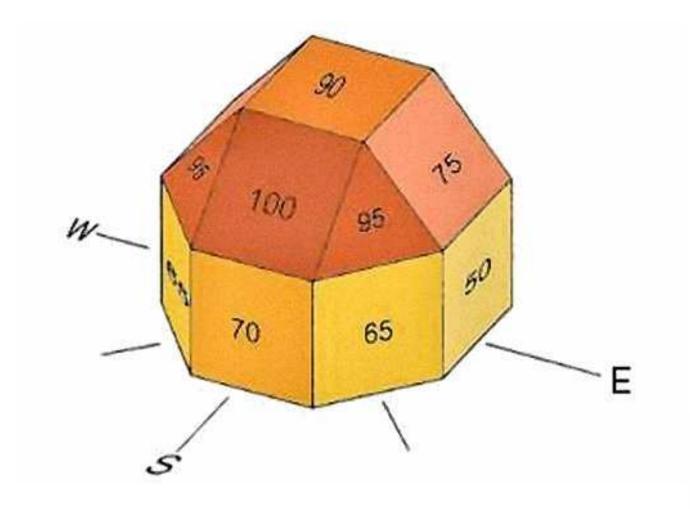
A BIPV module is a PV module and a construction product together, designed to be a component of the building. A BIPV product is the smallest (electrically and mechanically) non-divisible phovoltaic unit in a BIPV system which retains building related functionality. If the BIPV product is dismounted, it would have to be replaced by an appropriate construction product



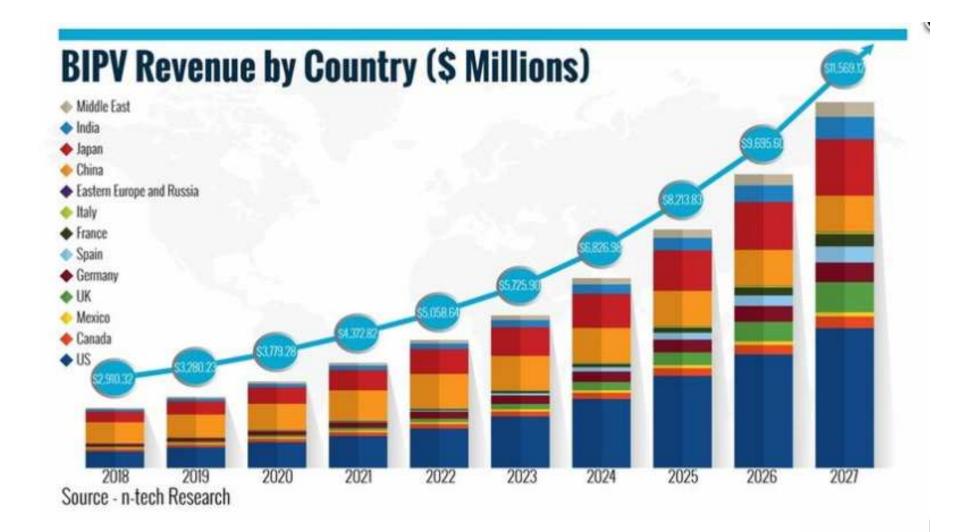
## BAPV

Number of PV modules > 11.000.000

Payback time less than


Kwh price in 20 years

7-10 years


0.10-0.13 Eur/kWh

Interest house owners: 5-8 %

## PV on the house



#### **International Energy Agency**



#### Zuyd & Research

ZU

YD

- Built environment (BIPV)
   Roof (2011-2018)
   Facade (2013-2018)
   Window (<2017)</li>
- Infrastructure (IIPV)
   Solaroad and Noise barriers (>2018)

### Zuyd&Research

 Validation and demonstration of integrated PV products and energy storage products for Buildings



### Demonstration & Field test District of Tomorrow



ZU

YD

#### **Realized BIPV projects at Zuyd**



#### Kerkrade-west (Bestaande wijk van morgen)

Heem wonen 152 houses  $F \rightarrow A++$ 

#### $\rightarrow$ renovation

 $\rightarrow$  new building envelop with PV





ZU

YD

## **BIPV**

- Modules
- •Color
- •Size
- •Curved
- •Transparent



## BIPV (Roof)

Integrated

Colour Black/blue  $\rightarrow$  Colors

Shape

Rigid  $\rightarrow$  Flexible

Size Rigid  $\rightarrow$  All sizes

# Built environment (Roof, integrated)







### Built environment (Roof, integrated)

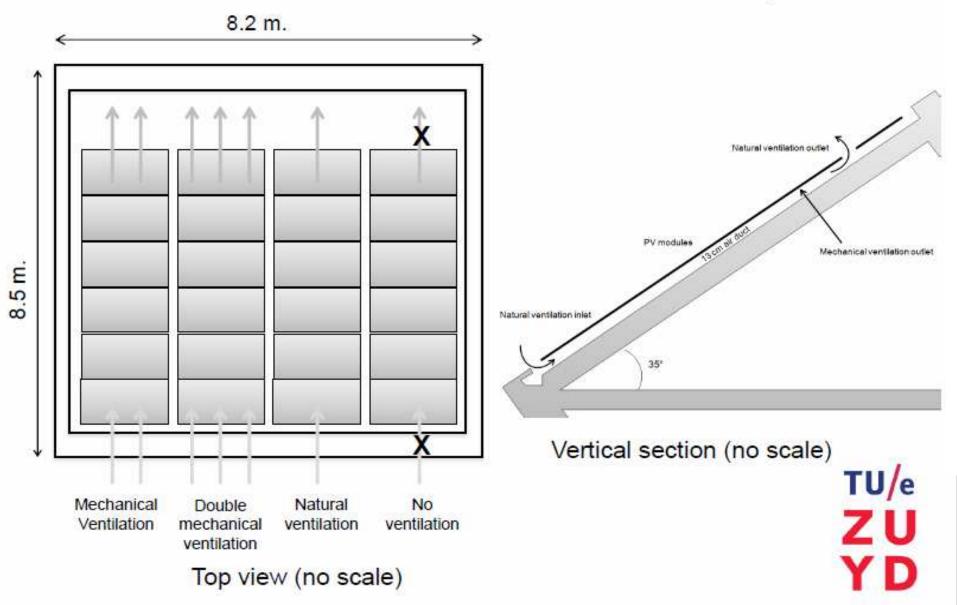




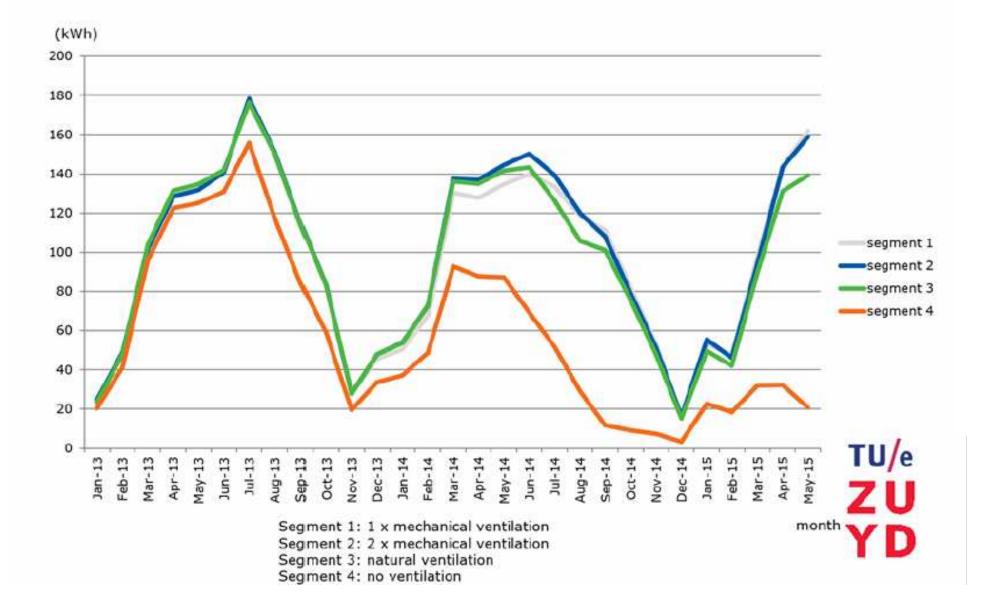
# Built environment (Roof, integrated)








### Building 1 Bent to the sun



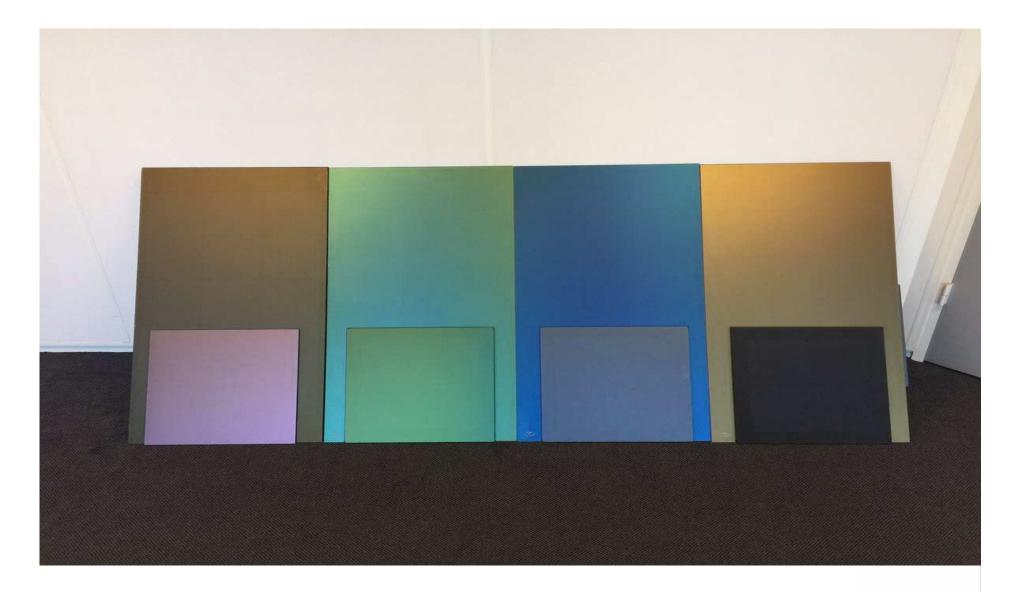



### Field Test 1 – technical layout

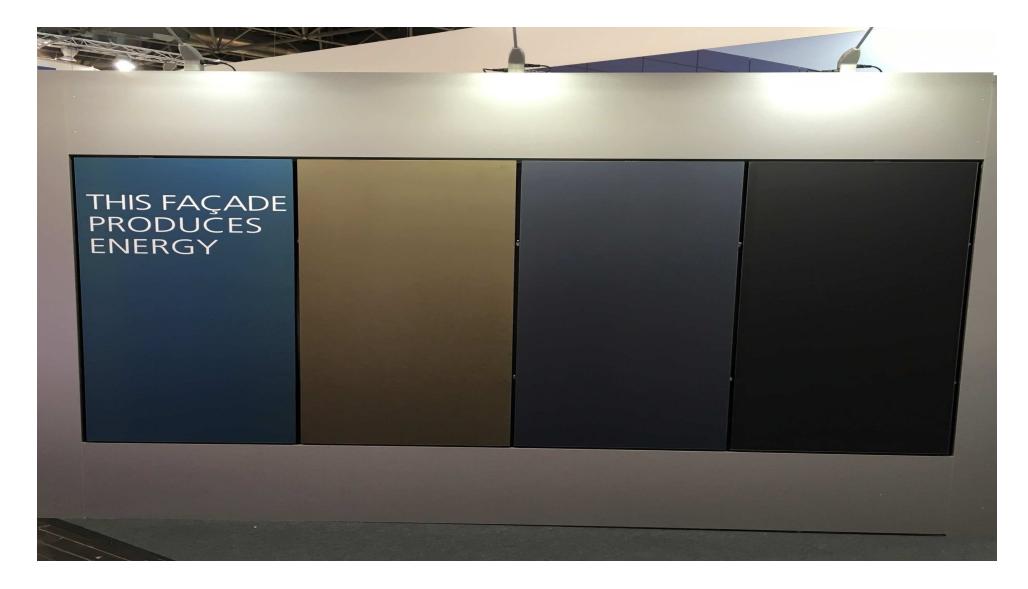


### Field Test 1 – PV output 2013-2015




| 209 Wp | 197 Wp | 169 Wp | 112 Wp |
|--------|--------|--------|--------|
| 213 Wp | 213 Wp | 183 Wp | 92 Wp  |
| 196 Wp | 196 Wp | 195 Wp | 124 Wp |
| 170 Wp | 139 Wp | 200 Wp | 160 Wp |
| 167 Wp | 194 Wp | 176 Wp | 185 Wp |
| 198 Wp | na     | 208 Wp | 199 Wp |

Wp per string (modules 1-5):


A: 955 Wp B: 939 Wp C: 923 Wp D: 673 Wp

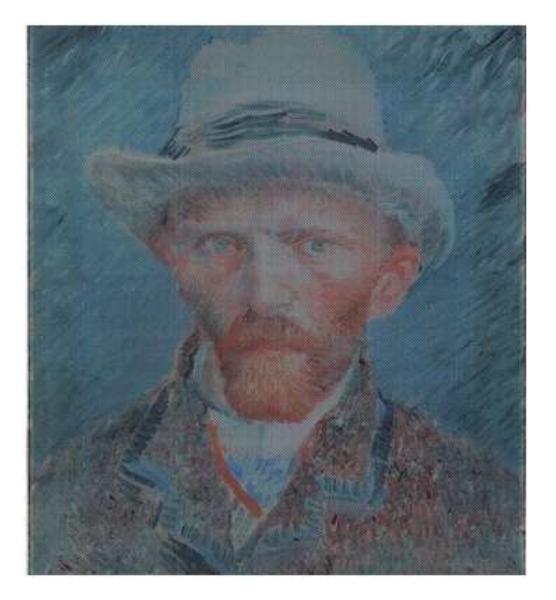
> TU/e ZU YD

### **Avancis**



### Avantis (Last week, Glasstec)




### **Kameleon Solar**





ZU YD

### **Kameleon Solar**





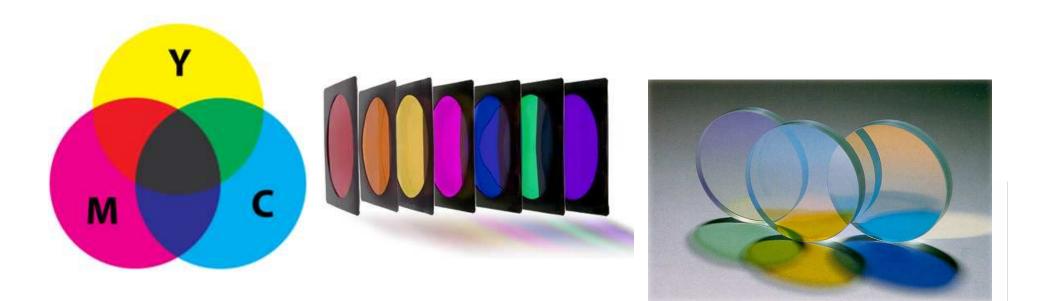
ZU YD

### **Colored solar modules**

- 1. Coating on top of silicon cell
- 2. Thin film technology (OPV)
- 3. Coating/foil on front glass substrate of module

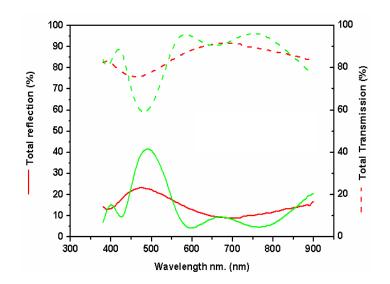


#### **Coloured Solar Cells**



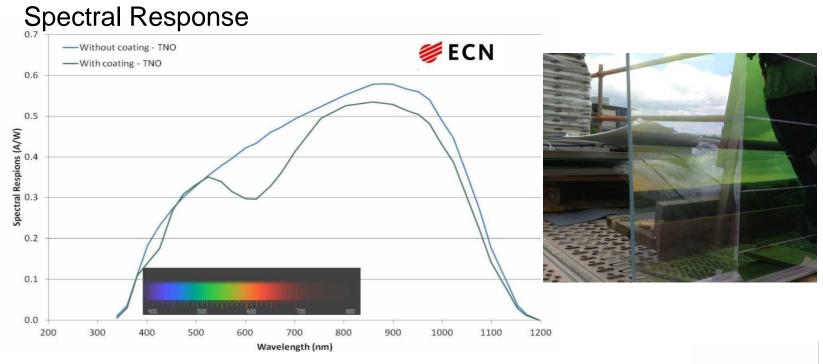

ZU

### **Creating colour**


- Paint
- Colour filter
- Selective reflective coating

|                              | Transmission | Reflection |
|------------------------------|--------------|------------|
| Paint                        |              | ++         |
| Colour Filter                | +/-          | +/-        |
| Selective reflective coating | ++           | +          |




### Selective reflective coatings (1)

- Working principle
  - Creation of interference stack
  - Reflection and colour can be adjusted
  - Stack applied on PV panels

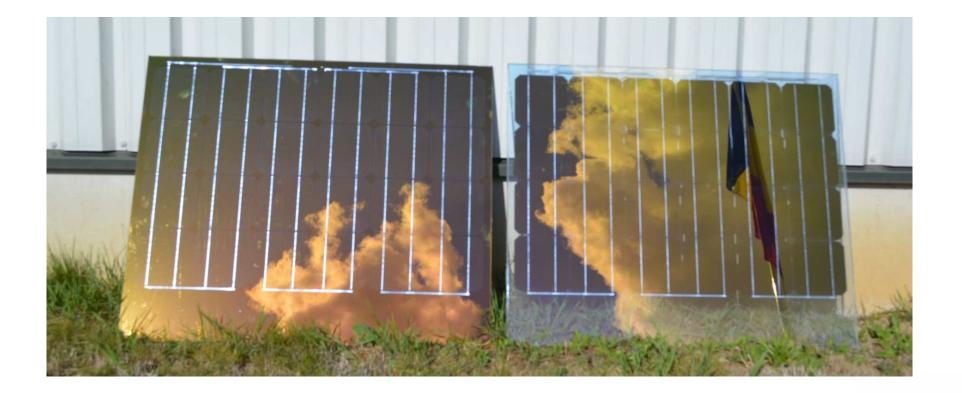




# Selective reflective coatings (Spectral response)



ZU YD


# Preparation of colored solar modules (Scale up)

- Size: 81.35 x 98.80 cm (half of a standard module).
- Preparation at Prinz-Optics and Soltech
- Cells: 6x4 (24).
- I-V test: Efficiency about 10% less than standard modules.

Y D

### **Preparation of colored solar module**

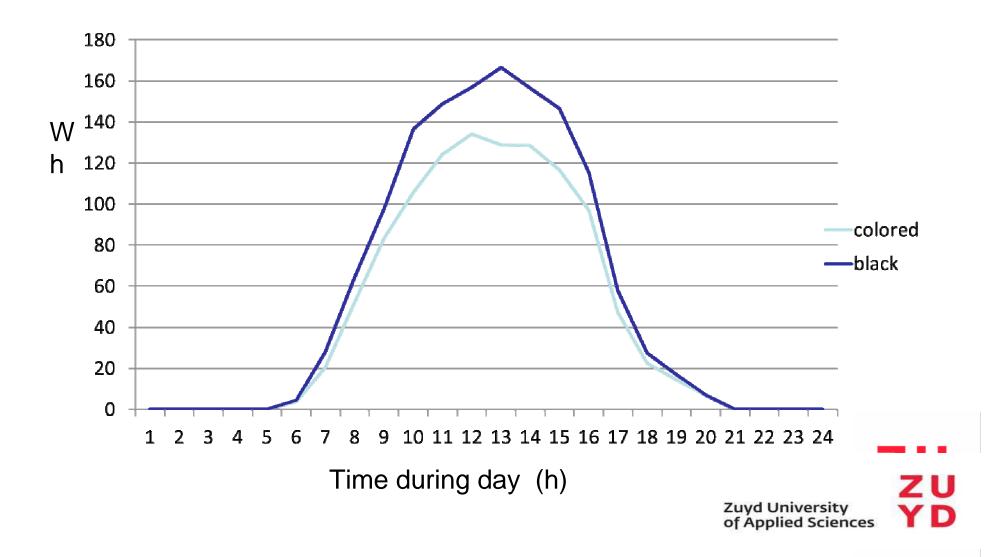
(24-cells colored modules with black and transparent EVA)



ZU

### **BIPV** roof

#### **Properties of the colored BIPV solar roof**


Number of colored modules: 8
Number of colored modules: 4 (black EVA)
Number of colored modules: 4 (transparent EVA)
Number of standard modules (100x160 cm): 36
Orientation 190°
Inclination 12°
9840 Wp total

ΖU

Y D

### **BIPV** roof

(average hourly PV output (Wh) of colored vs black modules with 80% compensation for difference between 48 and 60 cells) over 1 day.)



### **BIPV** roof



#### ZU YD

### **Field test**

- Reliability colored coating good
- Less than 20 % loss due to colored coating
- Different colors can be obtained.
- Building companies like the green-yellow color

ΖU

### Demo 1 Out with asbestos, in with solar panels



### Challenge

- > 10 km2 in Limburg (> 100 km2 asbestos roofs in the Netherlands)
- Asbestos must be removed before 2024.
- 30-40% of the asbestos roofs is with low construction. PV panels are heavy.
- > 3 km2 in Limburg (> 30 km2 asbestos roofs in the Netherlands) Thin film Improve roof construction

Y D

#### **District of tomorrow** (Building 4,Why thin film?)



•≈ 20 kg



•Mounting frame



•≈ 3-7 kg



•Peel and Stick

ZU YD

### Hyet Solar BV

Products: PowerFoil115: Single junction (a-Si:H) PowerFoil165: Tandem junction (a-Si:H/µc-Si:H) modules (n=10%)



ΖU

### **Eternit**



### Monday Oktober 8 (Building demo 1)



### Monday Oktober 8 (Building demo 1)



#### **Facades**



### Zigzag solar



### Zigzag solar (Q park Heerlen)



ZU YD

11/5/2018

### Solowall (SCX Solar)



### Solowall (SCX solar)



### PV & Windows (Transparant PV)



### Integrated PV window



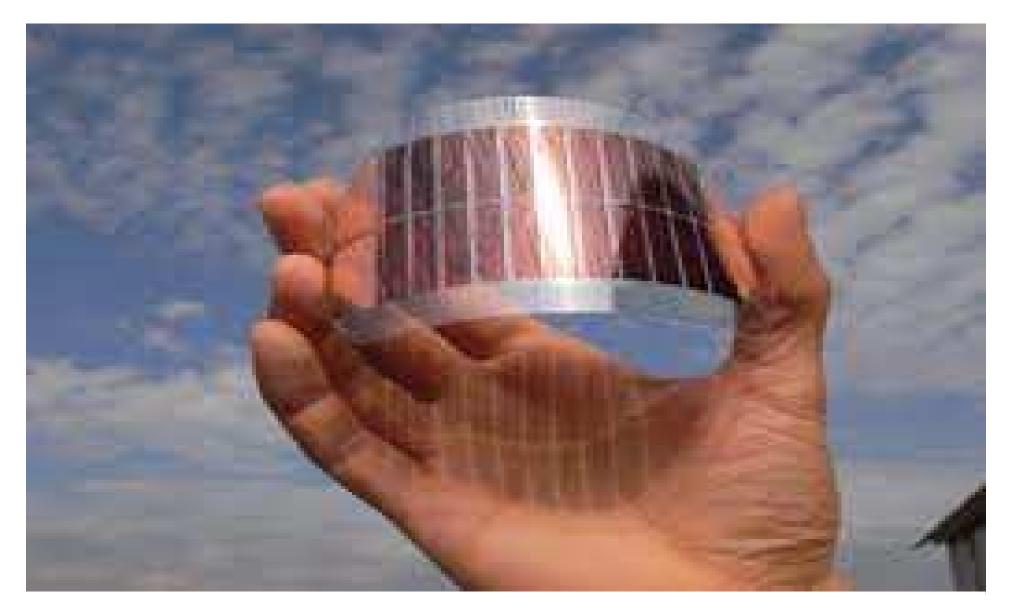
Δ N Z

665 × 374Op afbeeld



### Physee






### • Physee (Projects in the Netherlands)

#### OUR BRIGHT FUTURE: PHYSEE BACKLOG



## **OPV (Lifetime)**



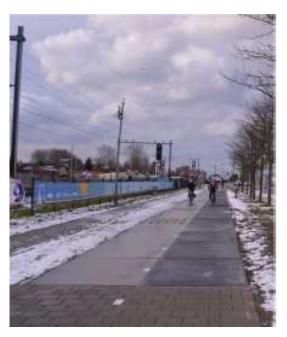
#### **PV & infrastructure**

Solaroad

**Noise Barriers** 

### Solaroad, infrastructure




YD

#### Solaroad, infrastructure



# **Solaroad Living Lab** Facts & Figures

- Location : Krommenie (15 km from Amsterdam)
- Cycling path : 70 m long and 3.5 m broad
- Half cycling path with PV solaroad (70x1.75 m)
- 54 modules, 16 kWp, 80 cells/module

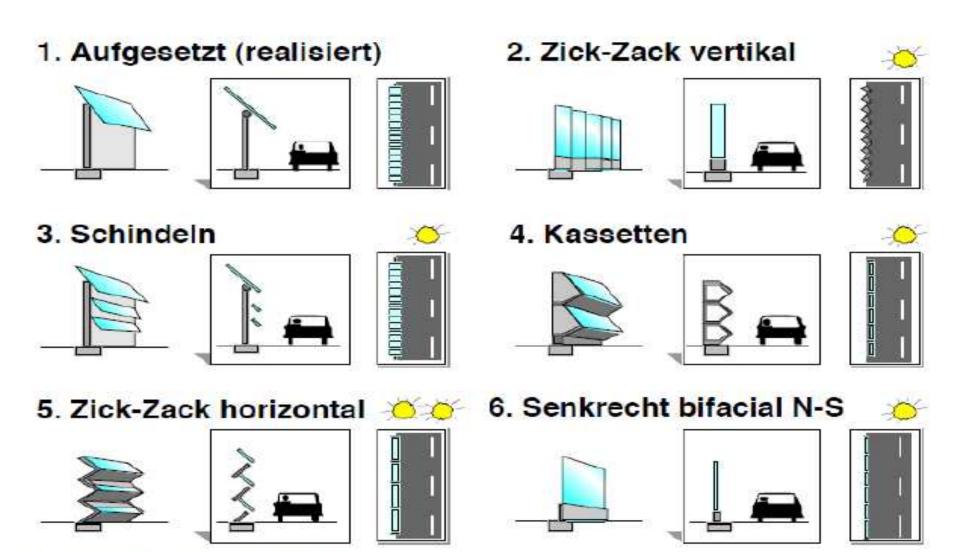


### Solaroad

2014-2018 Zuyd not involved

2018-2022

**Rolling Solar** 


- New product with CIGS in stead of silicon
- New types of encapsulants

### **Noise barriers**



| Country     | Citra                   | Road Railwa | Rated Power | THE P | timuth | Vear  | Loc | ation kno | al Owner Builder                |
|-------------|-------------------------|-------------|-------------|-------|--------|-------|-----|-----------|---------------------------------|
| Switzerland | Chur                    | A13         | 100         | 45°   |        | 1989  |     | c-Si      | TNC AG                          |
| Austria     | Seewalchen              | A1          | 40          |       | 160°   | 1992  |     |           | Oberöstereichische Kraftwerke   |
| Germany     | Rellingen               | A23         | 30          |       | 200°   | 1992  |     | 1         | TST (DASA)                      |
| Switzerland | Gordola                 | Rail        | 103         |       | 200°   | 1992  | x   |           | TNC AG                          |
| Germany     | Saarbrücken             | A620        | 60          |       |        | 1995  |     | 1         | Stadtwerken Saarbrücken         |
| Switzerland | Giebenach               | A2          | 100         | 45°   |        | 1995  |     |           | TNC AG/ Kanton Basel            |
| Netherlands | Utrecht                 | A27         | 55          | 50°   | 245°   | 1995  | х   | c-Si      | RWS                             |
| Netherlands | Ouderkerk a/d Amstel    | A9          | 220         | 50°   | 200°   | 1996  | x   | c-Si      | Shell & ENW / EU Commision      |
| Germany     | Inning am Ammersee      | A96         | 30          |       |        | 1997  |     |           | TNC GmbH, Bayernwerk, BMFT      |
| Switzerland | Zurich (Aubrugg)        | E41         | 10          | 90°   | 80°    | 1997  | х   | c-Si      | Uitbreiding door TNC in 2004    |
| Switzerland | Zurich (Walliselen)     | Rail        | 9.6         | 45°   | 200°   | 1998  | х   | c-Si      | TNC                             |
| Switzerland | Zurich (Brütisellen)    | A1          | 10          | 90°   | 140°   | 1999  | x   | a-Si      | TNC                             |
| France      | Fouquières-lès-Lens     | A21         | 63          | 45°   | 170°   | 1999  | х   | c-Si      |                                 |
| Germany     | Sausenheim              | A6          | 100         |       |        | 1999  |     |           |                                 |
| Austria     | Gleisdorf               | A2          | 101         |       |        | 2001  |     |           |                                 |
| Switzerland | Safenwil                | A1          | 80          | 45°   | 170°   | 2001  | x   | c-Si      | IG Solar Safenwil               |
| Germany     | Emden                   | A31         | 53          | 90°   | 180°   | 2003  | х   | multi     | Straßenbauamt Aurich/Energieven |
| Germany     | Freising (Munich)       | A92         | 600         | 45°   | 180°   | 2003- | x   | c-Si      |                                 |
| Germany     | Vaterstetten            | Rail        | 180         |       | 210°   | 2004  |     | a-Si      | Phoenix Solar                   |
| Germany     | Freiburg                | B31         | 365         |       |        | 2006  |     |           | TNC, aluminium: Van Campen      |
| Germany     | Großbettlingen          | 313         | 28          |       |        | 2006  |     |           |                                 |
| Australia   | Melbourne               | 40          | 24          | 90°   | 180°   | 2007  | x   | a-Si      |                                 |
| Germany     | Töging am Inn           | A94         | 1000        | 45°   | 210°   | 2007  | ×   |           |                                 |
| Switzerland | Melide (Lugano)         | A2/rail     | 123         | 45°   | 220°   | 2007  | X   | c-Si      | Suntechnics Fabrisolar AG       |
| Switzerland | Münsingen               | Rail        | 14          | 90°   | 80°    | 2008  | x   | c-Si      | TNC                             |
| Italy       | Marano d'Isera (Trento) | A22         | 730         | *     | 140°   | 2009  | x   | c-Si      | IrisLab/Autobrennero A22        |
| Germany     | Aschaffenburg           | A3          | 2065        | 45°   | 150°   | 2009  | x   | c-Si      | Evergreen solar GmbH            |
| Italy       | Oppeano (Verona)        | SS434       | 833         | 45°   | 210°   | 2010  | x   | c-Si      |                                 |
| Germany     | Bürstadt                | B47         | 283         | 60°   | 150°   | 2010  | x   |           |                                 |
| Germany     | Biessenhofen (Bayern)   |             | 90          | 45°   | 180°   | 2010  | x   |           | Rau Lärmschutzsysteme           |
| Germany     | Wallersdorf             | A92         | 1000        | 45°   | 150°   | 2010  | x   |           | Apfelböck Ingenieurbüro GmbH    |
| Germany     | Polling                 | Rail        | 1200        | 45°   | 210°   | 2012  | x   | c-Si      | Exaphi GmbH                     |
| Germany     | München                 | Rail/road   | 7.5         | 90°   |        | 2013  |     |           | Kohlauer                        |

## **Types of noise barriers**



Grafik @ 2002 TNC Consulting AG, Erlenbach

# SONOB project (SOlar NOise Barriers)

- Dutch Highways: 750-800 km Noise Barriers

Noise Barriers are needed a lot due to highways, close to highways

- Heijmans  $\rightarrow$  tested special Solar Noise Barriers
- $\rightarrow$  Luminescent solar concentrators
- $\rightarrow$  Bificial solar panels



### **Noise Barriers**

2014-2018 Zuyd not involved

2

2018-2022 Rolling Solar New product with CIGS in stead of silicon

ZU

YD

### PV & water (Floating solar/Marine solar)




#### **PV & water**





### **PV & water**





S Port of Rotterdam

Sunfloat

#### **PV & water**



## IEA PVPS Task 15

Enabling Framework for BIPV acceleration

It is not about a 'grand vision' on BIPV or reaching 'grid parity', it is about the basic conditions for upscaling niche markets and products.





# IEA PVPS Task 15 Subtasks

Subtask A – BIPV database

Subtask B – BIPV business cases

Subtask C – BIPV regulatory issues

Subtask D – BIPV environmental issues

Subtask E – BIPV R&D activities



## **IEA PVPS Task 15 Countries**

- 1. Austria
- 2. Australia
- 3. Belgium
- 4. Canada
- 5. China
- 6. France
- 7. Germany
- 8. Italy
- 9. Japan
- 10. Korea
- 11. Norway
- 12. Singapore
- 13. Sweden
- 14. Switzerland
- 15. The Netherlands





### Conclusions

- Netherlands need to integrate PV with other functions.
- Prototypes of BIPV enough. WIPV and IIPV are coming

ΖU

YD

 BIPV products produced on large scale not present→ price issue