

Exhaust Duct Design

Patrick J. Brooks, P.E. Senior Project Manager Sheet Metal and Air Conditioning Contractors' National Association INC

pbrooks@smacna.org

This ASHRAE Distinguished Lecturer is brought to you by the ASHRAE Society Chapter Technology Transfer Committee (CTTC).

- Please silence your phones.
- DL Evaluation Forms are very important. Please complete at the end of the presentation and return to the CTTC Chair or Program Chair.
- Lecturer presentations and/or opinions do not necessarily reflect the policies or position of ASHRAE or the chapter.
- More information on the DL Program available at: <u>ashrae.org/distinguishedlecturers</u>

LEADERSHIP WANTED!

Become a future leader in ASHRAE – Write the next chapter in your career!

ASHRAE members who are active at their chapter and society becomes leaders and bring information and technology back to their job.

You are needed for:

- Society Technical Committees
- Society Standard Committees
- Young Engineers in ASHRAE
- Chapter Membership Promotion
- Chapter Research Promotion
- Chapter Student Activities
- Chapter Technology Transfer

Find your place in ASHRAE and volunteer <u>ashrae.org/volunteer</u>

Duct Systems Design Guide

Exhaust Ventilation Air System

A typical local exhaust ventilation systems consist of the following basic elements:

- Hood to capture pollutants, vapors, and/or excessive heat
- Ducts to transport polluted air to an air-cleaning device or vent the exhaust air from the building
- Air-cleaning device to remove captured pollutants from the airstream for recycling or disposal
- Air-moving device (e.g., fan or high-pressure air ejector) to provide motive power to overcome system resistance
- Exhaust stack to discharge system air to the atmosphere

Exhaust Ventilation Air System

These elements are covered in detail by the following chapters of the American Conference of Governmental Industrial Hygienists (ACGIH) publication *Industrial Ventilation: A Manual of Recommended Practice for Design* (2019), or *ASHRAE Handbook—HVAC Applications* (2019):

Hoods:	ACGIH chapters 6 and 13
Air-cleaning devices:	ACGIH chapter 8
Fans:	ACGIH chapter 7
Stack design:	ACGIH chapter 5, Section 5.12, and/or ASHRAE chapter 45

Duct Design

Learning Objectives

- Overview Basic Equations
- Pressure Losses
- Hoods
- Duct Shape
- Duct Fittings for Exhaust
- Transport Velocity
- Duct Sizing
- Example Design

Cross-sectional Areas

Round:
$$A_d = \frac{\pi D^2}{4}$$

Flat Oval:
$$A_d = (\frac{\pi a^2}{4}) + a$$
 (A-a)
4

Basic Equations

Velocity
$$V = \underline{Q} \rightarrow A_d = \underline{Q}$$

 $A_d \qquad V$

If Q (cfm[L/s]) and A (ft² [m²]) are known, the duct velocity, V (fpm, m/s) can be calculated

Example 1: If the volume flow rate in a 22 in. (560 mm) duct is, Q = 5000 cfm (2360 L/s), what is the average velocity of air in the duct.

D = 22 inch (1.83 ft) [560 mm] $A_d = \frac{\pi (1.83)^2}{4} = 2.64 \text{ ft}^2 (.25 \text{ m}^2)$ 4V = 5000 / 2.64 = 1894 fpm [(2360/.25/ 1000) = 9.6 m/s]

Basic Equations

Velocity
$$V = \underline{Q} \rightarrow A_d = \underline{Q}$$

 $A_d \qquad V$

Example 2: If the design volume flow rate is 13,000 cfm (6135 L/s) and the velocity is 4000 fpm (20.3 m/s), what is the diameter.

 $A_d = Q / V = 13,000 / 4000 = 3.25 \text{ ft}^2$ (Multiply by 144 to get in²) = 468 in² [$A_d = Q / V = 6135 / 20.3/1000 = 0.30 \text{ m}^2$]

$$D = \sqrt{4 \ Ad/\pi}$$

$$D = \sqrt{4 \ x \ 468/\pi} = 24.4 \text{ inch}$$

$$D = \sqrt{4 \ x \ .3/\pi} = 0.62 \text{ m (618 mm)}$$

Basic Equations - Converging Flow

According to the law of conservation of mass, the volume flow rate after flows converge is equal to the sum of the flows before convergence at constant density.

$$\mathbf{Q}_{c} = \mathbf{Q}_{b} + \mathbf{Q}_{s}$$

Where:

- Q_c = common (upstream) volume flow rate, cfm (L/s)
- Q_b = branch volume flow rate, cfm (L/s)
- Q_s = straight-through volume flow rate, cfm (L/s)

$p_t = p_s + p_v$

Pitot-static tube

- Total pressure (p_t) represents the total energy of the air flowing in a duct system.
- Energy cannot be created or increased except by adding work or heat (typically at the fan)
- Energy and thus total pressure must always decrease from an inlet to the fan or once the air leaves the fan.
- Total pressure losses represent the irreversible conversion of static and kinetic energy to internal energy in the form of heat.
- These losses are classified as either *friction losses* or *dynamic losses*.

Static Pressure

- Static Pressure is a measure of the static energy of air flowing
- Air which fills a balloon is a good example of static pressure
- Equally exerted in all directions
- The atmospheric pressure of air is a static pressure = 14.696 psi at sea level. One psi ~ 27.7 in. of water, 1 atm~ 407 in. of water [101.325 kPa]
- Static pressure will decrease with an increase of velocity pressure
- Static pressure can increase if there is a decrease in velocity pressure (static regain)

Velocity Pressure

- Velocity pressure (p_v) is always a positive number in the direction of flow
- Will increase if duct cross-section area decreases
- Will decrease if duct cross-sectional area increases
- When velocity pressure increases, static pressure must decrease
- When velocity pressure decreases, there can be a gain in static pressure

Velocity Pressure

I-P
$$\boldsymbol{p}_{v} = \boldsymbol{\rho} \left(\frac{V}{1097} \right)^{2}$$

Where:

p_v = velocity pressure, in. of water (Pa)
V = velocity, ft/min (m/s)
ρ = density, lb_m/ft³ (Kg/m³)

si
$$p_v = \rho V^2/2$$

For standard conditions, $\rho = 0.075 \text{ lb}_{\text{m}}/\text{ft}^3$ (1.204 kg/m³)

Pressure – Changes in Pressure

$\Delta p_t = \Delta p_s + \Delta p_v$

Derived from the Bernoulli Equation

$$p_{s1} + \frac{\rho_1 V_1^2}{2g_c} + \frac{g}{g_c} \rho_1 z_1 = p_{s2} + \frac{\rho_2 V_2^2}{2g_c} + \frac{g}{g_c} \rho_2 z_2 + \Delta p_{t,1-2}$$

(ASHRAE 2017 Handbook, Chapter 21)

Friction Losses

Dynamic Losses

Darcy-Weisbach Equation (ASHRAE 2017 Handbook, Chapter 21)

$$\Delta p_t = \left(\frac{f L}{D_h} p_v\right) + \sum(C) * p_v$$

Where:

f = friction factor L = Length, ft (m) D_h = hydraulic diameter, ft (m) p_v = velocity pressure, in wg (Pa) C = loss coefficient

Left hand side is the Darcy Equation for the friction losses. Right Hand Side is the Weisbach Equation for fittings or other dynamic losses.

The ASHRAE Duct Fitting Database Determines Friction Losses and Fitting Losses and Coefficients and includes over 200 types of fittings

Friction – Colebrook Equation

$$\frac{1}{\sqrt{f}} = -2 \log \left(\frac{12\varepsilon}{3.7D_h} + \frac{2.51}{\text{Re}\sqrt{f}} \right)$$

The Colebrook equation was developed to calculate the friction factor, f; requires you to also know the Reynolds Number, Re and the absolute roughness, ε (ft[mm]), which is determined experimentally.

Pressure Losses (from ASHRAE 2021 Handbook) page 21.7

Table 1 Duct Rough	iness Factors			
1	2	3		
	Absolute Roughness ε, ft {mm}			
Duct Type/Material	Range	Roughness Category		
Drawn tubing (Madison and Elliot 1946)	0.0000015 {0.00046}	Smooth 0.0000015 {0.0004		
PVC plastic pipe (Swim 1982)	0.00003 to 0.00015 {0.009 to 0.046}	Medium smooth 0.00015 {0.046}		
Commercial steel or wrought iron (Moody 1944)	0.00015 {0.046}			
Aluminum, round <mark>,</mark> longitudinal seams, crimped slip joints, 3 ft {0.91 m} spacing (Hutchinson 1953)	0.00012 to 0.0002 {0.037 to 0.061}			
Friction chart:				
Galvanized steel, round, longitudinal seams, variable joints (Vanstone, drawband, welded. Primarily beaded coupling), 4 ft {1.22 m} joint spacing (Griggs et al. 1987)	0.00016 to 0.00032 {0.049 to 0.098}	Average 0.0003 {0.09}		
Galvanized steel, spiral seams, 10 ft {3.05 m} joint spacing (Jones 1979)	0.0002 to 0.0004 {0.061 to 0.12}			
Galvanized steel, spiral seam with 1, 2, and 3 ribs, beaded couplings, 12 ft {3.66 m} joint spacing (Griggs et al. 1987)	0.00029 to 0.00038 {0.088 to 0.116}			
Galvanized steel, rectangular, various type joints (Vanstone, drawband, welded. Beaded coupling), 4 ft {1.22 m} spacing ^a (Griggs and Khodabakhsh- Sharifabad 1992)	0.00027 to 0.0005 {0.082 to 0.15}			
Phenome duct, auminum foil on the interior face, sections connected with a four-bolt flange and cleat joint (Idem and Paruchuri 2018) 5 ft {1.52 m} spacing: 10 ft {3.05 m} spacing:	0.00049 to 0.00128 {0.149 to 0.391} 0.00025 to 0.00098 {0.075 to 0.298}			
Wright Friction Chart:				
Galvanized steel, round, longitudinal seams, 2.5 ft {0.76 m} joint spacing, ϵ = 0.0005 ft {0.15 mm}	Retained for historical purpos development of f			
Flexible duct, nonmetallic and wire, fully extended (Abushakra et al. 2004; Culp 2011)	0.0003 to 0.003 {0.09 to 0.9}	Medium rough 0.003 {0.9		
Galvanized steel, spiral, corrugated, ^b Beaded slip couplings, 10 ft {3.05 m} spacing (Kulkarni et al. 2009)	0.0018 to 0.0030 {0.54 to 0.91}			
Fibrous glass duct, rigid (tentative) ^c	0 <u>—</u> 0			
Fibrous glass duct liner, air side with facing material (Swim 1978)	0.005 {1.52}			
Fibrous glass duct liner, air side spray coated (Swim 1978)	0.015 {4.57}	Rough 0.01 {3.0}		
Flexible duct, metallic corrugated, fully extended	0.004 to 0.007 {1.2 to 2.1}			
Concrete (Moody 1944)	0.001 to 0.01 {0.30 to 3.0}			

^aGriggs and Khodabakhsh-Sharifabad (1992) showed that e values for rectangular duct construction combine effects of surface condition, joint spacing, joint type, and duct construction (cross breaks, etc.), and that the e-value range listed is representative.

^bSpiral seam spacing was 4.65 in. {119 mm} with two corrugations between seams. Corrugations were 0.75 in. {19 mm} wide by 0.23 in. {6 mm} high (semicircle). ^cSubject duct classified "tentatively medium rough" because no data available.

Pressure Losses (from ASHRAE 2021 Handbook)

Table 1 Duct Roughness Factors								
1	2	3						
	Absolute Roughness ε, ft {mm}							
Duct Type/Material	Range	Roughness Category						
Galvanized steel, round, longitudinal seams, variable joints (Vanstone, drawband, welded. Primarily beaded coupling), 4 ft {1.22 m} joint spacing (Griggs et al. 1987)	0.00016 to 0.00032 {0.049 to 0.098}	Average 0.0003 {0.09}						
Galvanized steel, spiral seams, 10 ft {3.05 m} joint spacing (Jones 1979)	0.0002 to 0.0004 {0.061 to 0.12}							
Galvanized steel, spiral seam with 1, 2, and 3 ribs, beaded couplings, 12 ft {3.66 m} joint spacing (Griggs et al. 1987)	0.00029 to 0.00038 {0.088 to 0.116}							
Galvanized steel, rectangular, various type joints (Vanstone, drawband, welded. Beaded coupling), 4 ft {1.22 m} spacing ^a (Griggs and Khodabakhsh- Sharifabad 1992)	0.00027 to 0.0005 {0.082 to 0.15}							

Dynamic

The right-hand side of the Darcy-Weisbach Equation is the Weisbach Equation

$$\Delta p_{t,fittings} = \sum (C) * p_v$$

Dynamic -How Loss Coefficients are Determined

$$\Delta p_{t,fitting} = C * pv, \ C = \frac{\Delta p_{t,fitting}}{p_v}$$

 $\Delta p_{t,1-2} = \Delta p_{s,7-8} + (p_{\nu7} - p_{\nu8}) - (L_{7-1}\Delta p_{f,7-1} + L_{2-8}\Delta p_{f,2-8})$

Dynamic – Loss Coefficients , ASHRAE Duct Design Database

$$\Delta p_{t,fitting} = C * pv, \ C = \frac{\Delta p_{t,fitting}}{p_v}$$

ASHRAE Duct Fitting Database (DFDB)

- Has 232 Fittings
- Calculates Loss of Round, Rectangular and Flat Oval Duct and Fittings
- Calculates and Takes into Account Density Can Change Air Properties
- Determines Pressure Loss Base on Input Dimensions and Flow Rates
- Can Look at Complete Fitting Loss Coefficient Table Data, Print it or Export it to Excel
- Can Lookup Fittings in Table View by Filters
- Results in I-P or SI

Example Using ASHRAE Duct Design Database I-P

Friction Loss, 10" Diameter, Airflow is 1000 cfm, L = 100 ft, $\varepsilon = 0.0003$ ft

CD11-1 Straight Duct, Round

Example Using ASHRAE Duct Design Database SI

CD11-1 Straight Duct, Round (Colebrook 1939)

riction Loss, 254 mm Diameter, Airflow is 472 L/s, L = 30 m , ε = 0.09 mm

		,
INPUT		
Diameter (D)	mm	254
Length (L)	m	30
<u>Absolute Roughness (ei)</u>	mm	.09
Flow Rate (Q)	L/s	472
Density (RHO)	kg/m^3	1.204

Calculate

OUTPUTVelocity (V)m/s9.3Velocity Presure (Pv)Pa52Reynolds Number (Re)156,719Friction Factor (f)0.0185Pressure Loss (Po)Pa114.4

Example Using ASHRAE Duct Design Database I-P Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

CD3-1 Elbow, Die Stamped, 90 Degree, r/D = 1.5 (UMC 1985, Report SRF785)

INPUT			
Diameter (D)	in.	10	-
Flow Rate (Q)	cfm	1000	
Density (RHO)	lbm/ft^3	0.062	90°
Calculate			
OUTPUT			
Velocity (Vo)	fpm	1,833	
Vel Pres at Vo (Pv)	in. wg	0.17	
Loss Coefficient (Co)		0.11	
Pressure Loss (Po)	in. wg	0.02	
2			

Example Using ASHRAE Duct Design Database SI Example: 250 mm Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 472 L/s. Elevation is 1524 m.

CD3-1 Elbow, Die Stamped, 90 Degree, r/D = 1.5 (UMC 1985, Report SRF785)

INPUT		
Diameter (D)	mm	250
Flow Rate (Q)	L/s	472
Density (RHO)	kg/m^3	0.996
Calculate		
OUTPUT		
Velocity (Vo)	m/s	7.6
Vel Pres at Vo (Pv)	Ра	29
Loss Coefficient (Co)		0.11
Pressure Loss (Po)	Pa	3.1

Example Using ASHRAE Duct Design Database I-P

Example: $D_s = 10$ in., $D_b = 8$ in. $D_c = 12$ in., $Q_s = 2200$ cfm and $Q_b = 1400$ cfm. Elevation is 5000 ft.

ED5-1 Wye, 30 Degree, Converging

Example Using ASHRAE Duct Design Database SI

Example: $D_s = 250 \text{ mm}$, $D_b = 200 \text{ mm}$, $D_c = 300 \text{ mm}$, $Q_s = 1050 \text{ L/s}$ and $Q_b = 660 \text{ L/s}$ Elevation is 1630 m. (Sepsy 1973)

INPUT				
Diameter (Ds)	mm	250		
Diameter (Db)	mm	200		
Diameter (Dc)	mm	300		
Flow Rate (Qs)		1050		
Flow Rate (Qb)	L/s	660		
Density (RHO)	kg/m^3	0.989		D
Calculate Load Defaults				Q, ∠ D _e -D ₉ (1 [*] (25mm) min. □ 12 [*] (300mm) max.) [^D e
OUTPUT				
BRANCH				
Velocity (Vb)	m/s	21.0	1	
Vel Pres at Vb (Pvb)	Pa	218	,	
Loss Coefficient (Cb)		0.09		2"(50mm)
Branch Pressure Loss (Pob)	Pa	20		A _b
MAIN				
Velocity (Vs)	m/s	21.4		
Velocity (Vc)	m/s	24.2		
Vel Pres at Vs (Pvs)	Pa	226		
Vel Pres at Vc (Pvc)	Pa	289		
Loss Coefficient (Cs)		-0.02		
Main Pressure Loss (Pos)	Pa	-6		

Friction Efficiency – Roughness vs Velocity, I-P

Example: 24" Round Duct, L = 100 ft, Standard Density

Using ASH	RAE Databas	5	Standar	d Densi	ity	
			Standard		Corru	gated
			Galva	nized	Du	ıct
			(ε = 0.0	003 ft)	(ε = 0.0	003 ft)
	Velocity					
Velocity	Pressure	Q = AV Flow	Δp _f Friction		Δp _f Friction	
(fpm)	p _v (in. wg)	Rate (cfm)	Loss (in. wg)		Loss (i	n. wg)
1000	0.06	3150		0.05		0.07
2000	0.25	6300		0.19		0.28
3000	0.56	9450		0.41		0.62
4000	0.99	12550		0.71		1.09

Friction Efficiency – Roughness vs Velocity, I-P

Example: 610" Round Duct, L = 30 m, Standard Density

Using ASH	RAE Databa	ise, Sl	Standard Dens	sity	
			Standard	Lined Duct,	
			Galvanized	Corrugated	
			(ε = 0.09 mm)	(ε = 0.9 mm)	
	Velocity	Q = AV			
Velocity	Pressure	Flow Rate	Δp _f Friction	Δp _f Friction	
(m/s)	p _v (Pa)	(L/s)	Loss (Pa)	Loss (Pa)	
5.1	16	1500	13.0	17.7	
10.1	61	2950	46.0	66.9	
15.1	136	4400	98.3	147.7	
20.1	243	5875	171.0	262.3	

Friction Efficiency – Roughness vs Velocity

Example: 24" (610 mm) Round Duct, L = 100 ft (30 m), Standard Density using ASHRAE DFDB

Observations:

□ Factor of 13+!! Increase in Pressure Loss when Velocity is Increase by a Factor of 4, From 1000 to 4000 fpm (5 to 20 m/s)

✤ 0.05 in wg (13 Pa) increased to 0.71 in wg (171 Pa)

- Factor of only 1.2 to 1.4 Increase in Pressure Loss When Roughness (ε) is Increased by a Factor of 10
 - At 1000 fpm (5 m/s) , 0.05 in wg (13 Pa) increased to 0.07 in wg (17.7 Pa)
 - At 4000 fpm (20 m/s), 0.71 in wg (171 Pa) increased to 1.09 in wg (262 Pa)

Equivalent Round for Rectangular and Flat Oval Duct – Converting Duct Sizes

Rectangular:
$$D_e = \frac{1.30(WH)^{0.025}}{(W+H)^{0.250}}$$

Flat oval: $D_e = \frac{1.55AR^{0.625}}{p^{0.250}} = \frac{1.55\left[\frac{\pi}{4}a^2 + a(A-a)\right]^{0.625}}{[\pi a + 2(A-a)]^{0.250}}$

A 272

D_e= Equivalent Round, in (mm) AR = Cross-section Area, in² (mm²) W= Rectangular Width, in (mm) H = Rectangular Height, in (mm) A = Flat Oval Major Dimensions, in (mm) a = Flat Oval Minor Dimensions, in (mm)

Fitting Efficiency – Round Elbows

Example: Diameter = 10 inch, Standard Density using ASHRAE DFDB

From ASHRAE DFDB				90'		90.		90.		90.					
				Smooth Ra	dius, R/D = 1.5	Smooth Ra	adius, R/D = 1.0	5 Piec	e, R/D = 1.5	3 Piece, R/D	= 1.5 (Table	Mitered	w Vanes	Mitered wit	hout Vanes
		Velocity	and and an												
		Pressure	Q = AV	Loss		Loss		Loss		Loss		Loss	2.5. 198522 2.2	Loss	
	Velocity	p _v (inch	Flow Rate	Coefficient	Δp _t (inch	Coefficient		Coefficient		Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch
	(fpm)	water)	(cfm)	С	water)	С	∆p, (inch water)	С	∆p, (inch water)	С	water)	С	water)	С	water)
Ι	1000	0.06	545	0.11	0.01	0.24	0.01	0.20	0.01	0.34	0.02	0.48	0.03	1.19	0.07
Т	2000	0.25	1090	0.11	0.03	0.24	0.06	0.20	0.05	0.34	0.09	0.48	0.12	1.19	0.30
	3000	0.56	1635	0.11	0.06	0.24	0.13	0.20	0.11	0.34	0.19	0.48	0.27	1.19	0.67
Ι	4000	0.99	2175	0.11	0.11	0.24	0.24	0.20	0.20	0.34	0.34	0.48	0.48	1.19	1.18
Best		Best	E	Better		Better	Go	od	Go	od	BA	۱D			
Fitting Efficiency – Round Elbows

Example: Diameter = 250 mm, Standard Density using ASHRAE DFDB

From ASHR	AE DFDB, S	51		90'		90,		90.		90.				
			Smooth Ra	dius, R/D = 1.5	Smooth Rad	dius, R/D = 1.0	5 Piece	e, R/D = 1.5	3 Piece, R/D	= 1.5 (Table	Mitered	w Vanes	Mitered wit	hout Vanes
	Velocity	Q = AV	Loss				Loss		Loss		Loss		Loss	
Velocity	Pressure	Flow Rate	Coefficient	efficient Coeff C Δp _t (Pa) 0			Coefficient		Coefficient		Coefficient		Coefficient	
(m/s)	p _v (Pa)	(L/s)	С			Δp _t (Pa)	С	Δp _t (Pa)	С	Δp _t (Pa)	С	Δp _t (Pa)	С	Δp _t (Pa)
5.2	17	257	0.11	1.87	0.24	4.08	0.20	3.40	0.34	5.78	0.48	8.16	1.19	20.23
10.5	66	514	0.11	7.26	0.24	15.84	0.20	13.20	0.34	22.44	0.48	31.68	1.19	78.54
15.7	149	771	0.11	16.39	0.24	35.76	0.20	29.80	0.34	50.66	0.48	71.52	1.19	177.31
20.9	263	1026	0.11	28.93	0.24	63.12	0.20	52.60	0.34	89.42	0.48	126.24	1.19	312.97
			E	Best	B	etter	E	Better	Go	bd	Goo	od	BA	٨D

Preferred Duct Fittings - Elbows

PREFERRED

CD3-10 (7-Gore, 90°, *r/D* = 2.5) CD3-11 (Flat-back, 90°) ACCEPTABLE CD3-9 (5-Gore, 90°, r/D = 1.5)

AVOID CD3-15 (Mitered, 90°)

Preferred Duct Fittings - Wyes

without Vanes

ED5-9 (60°) plus CD3-16 (60°)

Preferred Duct Fittings – Branches

Preferred Duct Fittings – Fan Inlet Connections

Preferred Duct Fittings – Stacks

Designing the Exhaust Duct System Overview

- Step 1___Determine air volume requirements based on the required capture velocity and Hood intake area. Include an allowance for leakage.
- Step 2___Determine the type of Hood and Location.
- Step 3_Locate duct runs. Avoid unnecessary directional changes
- Step 4___Determine the allowable noise (NC) levels.
- Step 5___Determine the minimum transport velocity
- Step 6___Determine duct sizes to maintain the transport velocity
- Step 7___Use round sizes when possible
- Step 8___Determine system pressure requirements. Include total pressure losses of components.
- Step 9__Sum the losses in each path to the fan.

Designing the Exhaust Duct System Overview

- Step 10___Determine the design leg(s)
- Step 11___Determine the required fan operating pressure
- Step 12 Analyze the design to improve balancing and reduce material cost.
- Step 13__Select fan according to proper guidelines for the operating pressure and maximum total volume flow rate
- Step 14 Analyze the design to make sure it meets the acoustical requirements.
- Step 15__Select materials that minimize cost and meet SMACNA Duct Construction Standards.
- Step 16 Analyze the life-cycle cost of the design.
- Step 17__Commission the design to make sure it meets the Owner's Project Requirements (OPRS)

Pressure Losses – The Design Leg

Critical Path

Critical paths are the duct sections from a fan outlet to the terminal device with the <u>highest total pressure drop for supply</u> <u>systems</u> or from the entrance to the fan inlet with the <u>highest</u> <u>total pressure drop for return or exhaust systems</u>.

Designing the Duct System Overview

Selecting the Design Method

Use the *Manual of Recommended Practice of Design* (AGCIH 2019) to calculate hood airflow rates

- Air quantities are actual airflow based on the air density
- Hood velocity determines the effectiveness of the hood regardless of the acfm. If the actual airflow is not high enough the velocity will not capture the air contaminants.
- Hoods are designed for particulate control, not collections although there often is a collector.
- Particles that settle out should be cleaned up to prevent reentrainment due to foot traffic and air currents.
- Velocity pressure should be corrected for density.

Transport (Conveying) Velocity – Constant Velocity Design Method

Called Constant Velocity Design Method because You Must Maintain a Constant Minimum Transport Conveying Velocity So Contaminants Don't Fall Out of the Airstream

- For vapors, gases and smoke, you can design with Equal Friction (See the *Duct Systems Design Guide* (DSDG) chapter on Designing with Equal Friction). Velocities should still be in the range of 1000 to 2000 fpm (5 to 10 m/s)
- Table 2-1 in the in the SMACNA Round Industrial Duct Constructions Standards (Round IDCS) Third Edition are Ranges of Minimum Transport (Conveying) Velocities for varius materials

Transport (Conveying) Velocity – Constant Velocity Design Method

Duct Class	Nature of Contaminant	Examples	Con- centration	Abrasion	Minimum Conveying Velocities fpm (m/s)
1	Gases	Non-abrasive, non-corrosive ap- plications, including contaminated duct sections of make-up air and general ventilation systems, and gaseous emission control systems.	None	None	1000 – 2000 (5 – 10)
	Fumes, Vapors, Smoke and Aerosols (Spray, Mists, and Fog)	Zinc and aluminum oxide fumes, welding fumes, paint overspray, etc.	Light	None	2000 - 2500 (10 - 13)
	Very Fine, Light Dust	Cotton lint, wood flour, litho pow- der, etc.	Light	Light	2500 - 3000 (13 - 15)
2	Dry Dusts and Powders	Fine rubber dust, Bakelite molding powder dust, jute lint, cotton dust, light shavings, leather shavings, soap dust, dry fine sawdust, grain dust, and buffing and polishing dust	Low	Moderate	3000 – 4000 (15 – 20)

Transport (Conveying) Velocity – Constant Velocity Design Method

Duct Class	Nature of Contaminant	Examples	Con- centration	Abrasion	Minimum Conveying Velocities fpm (m/s)
3	Average Industrial Dust	Class 3 materials in low to moderate concentrations, including granite dust, silica flour, material handling (general), brick cutting, clay dust, foundry (general), limestone dust, abrasive cleaning operations, dry- ers, kilns, boiler breaching, sand handling, manganese, steel chips, coke, etc.	Moderate	High	3500 - 4000 (18 - 20)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Class 2 materials in moderate to high concentrations, including saw- dust (heavy and wet), grinding dust, buffing lint (dry), wool jute dust (shaker waste), coffee beans, shoe dust, etc.	High	Moderate	

Transport (Conveying) Velocity – Constant Velocity Design Method

Duct Class	Nature of Contaminant	Examples	Con- centration	Abrasion	Minimum Conveying Velocities fpm (m/s)
4	Heavy Dusts	Class 3 materials in high concentra- tions, metal turnings, foundry shakeout and tumbling barrels, sand blast dust, wood blocks, hog waste, brass turnings, cast iron boring dust, lead dust, etc.	High	High	4000 – 4500 (20 – 23)
	Heavy, Moist, and Sticky Dusts	Lead dust with small chips, moist cement dust, wet furnace slag, wet mortar, buffing lint (sticky), quick lime dust, etc.	High	High	4500 and up (23 and up)
5	Corrosive Fumes	Corrosive applications; laboratory fume hoods, plating tanks contain- ing corrosive chemicals, etc.	Light	None	1000 – 2000 (5 – 10)

Table 2–1 Duct Classes and Minimum Conveying Velocities

Constant (Transport) Design Method Steps

- Size all main and branch duct at the constant transport velocity. Round duct sizes down so as to maintain the minimum required velocity.
- Calculate the total pressure loss for each section including hoods, duct, junctions, collectors or other items.
- If by hand, a spreadsheet will be helpful
- For each main and branch of a junction be sure to account for the straight-through and branch loss coefficients
- Tabulate the total pressure required <u>for each path</u> from the hood inlets to the fan)
- Determine the critical path and maximum operating pressure
- Determine the excess pressure for each non-critical path
- Use smaller sizes or additional airflow in the non-critical paths to balance the system (don't use blast gates or dampers unless Class 1)

Example

Size the system shown using constant minimum velocity. $\varepsilon = 0.0003$ ft (0.12 mm) . RH%=50. The design parameters are shown in the Table. Size to 0.5-inch (12 mm) sizes. Used the ASHRAE DFDB for Calculations

Example – Hoods Used

Grinding Wheel Hood

Designing the Duct System - Example

												2
		Minimum	Velocity	Hood	Air Re	quired	Tempe	erature	Den	sity	Len	gth
Section	Hood	fpm	m/s	Loss Coefficient	cfm	L/s	°F	°C	lb _m /ft ³	kg/m ³	ft	m
	VS-80-19 Chipping											
1	& Grinding Table	3500	17.5	0.25	800	378	90	32	0.072	1.147	38	11.6
	VS-80-11 Grinding											
2	Wheel	4000	20	0.40	500	236	90	32	0.072	1.147	20	6.1
3		4000	20		1300	614	90	32	0.072	1.147	30	9.1
Collector ∆p =	3 in wg (746.5 Pa)				1300	614	90	32	0.072	1.147		
	Friction R	ate 0.2 in	wg/100 ft (1.64									
6	Collector and Fan		Pa/ı	m)	1300	614	90	32	0.072	1.147	15	4.6

Example – Spreadsheet Calculate Sizes and Pressure Losses I-P

Sections 1 and 2

Set of a rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Image: series of the	tion	ent	ther		ASHRAE Fitting Code	Qty,	Temp., °F		Velocity, fpm (Table	Duct Area	Duct Dia., D _e ,	D (W x H, A	Velocity,		Pressure, pv,	Loss Coef- ficient C0	Δp _t , in. water
Image: series of the	Sect	Par	Brot	Fitting Description							Source						
1 3 2 VS-80-19 ACGH-IVM 3500 32.9 6.47 6 4074 38 [Round Dia] 1 3 2 90° Flat-back Elbow CD3-11 800 90 0.072 1 1 1 3 1 1 1 3 1 <td< th=""><th>an c</th><th>0.043</th><th></th><th></th><th>DFDB</th><th></th><th>Drawing</th><th>DFDB</th><th>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</th><th>Q/V</th><th>$\sqrt{4 Ad/\pi}$</th><th></th><th>DFDB</th><th>Drawing</th><th>DFDB</th><th>ACGIH or DFDB</th><th>Σ</th></td<>	an c	0.043			DFDB		Drawing	DFDB	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Q/V	$\sqrt{4 Ad/\pi}$		DFDB	Drawing	DFDB	ACGIH or DFDB	Σ
1 3 2 90° Flat-back Elbow Capped wye with albow: Db=6 in Dc=6 800 90 0.072 1<				A CONTRACTOR OF A CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACT	ACGIH - IVM											0.25	
1 3 2 Capped wye with elbow: Db=6 in. Dc=6 ED5-6 800 90 0.072 1 1 1 0 0.0 Wye, main: Ds=6 in Dc=7.5 in., Db=4.5in. Dc=7.5 in., Db=4.5in. ED5-1 ED5-1 ED5-1 0 0 0.072 0 0 0.072 0				Duct	CD11-1				3500	32.9	6.47	6	4074	38	[Round Dia]		1.45
2 3 1 90° Flat-back Elbow Elbow ACGH - IVM CD3-11 ACGH - IVM S00 NM NM ACGH - IVM S00 ACGH - IVM S00 NM ACGH - IVM S00 NM ACGH - IVM S00 ACGH - IVM S00 NM ACGH - IVM S00 NM ACGH - IVM S00 ACGH - IVM S00 ACGH - IVM S00 ACGH - IVM S00 NM ACGH - IVM S00 </td <td>1</td> <td>3</td> <td>2</td> <td>90° Flat-back Elbow</td> <td>CD3-11</td> <td>800</td> <td>90</td> <td>0.072</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.08</td> <td></td>	1	3	2	90° Flat-back Elbow	CD3-11	800	90	0.072								0.08	
2 3 1 Boc = 7.5 in., Db = 4.5in. EUS-1 Company <thcompany< th=""> Company <thc< td=""><td></td><td>5</td><td>-</td><td></td><td>ED5-6</td><td></td><td>20</td><td>0.072</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.61</td><td></td></thc<></thcompany<>		5	-		ED5-6		20	0.072								0.61	
Accian 1 Total Hood: ACGIH (2010), VS-80-11 ^b (Tapered Takeoff) ACGIH - IVM ACGIH - IV					ED5-1											-0.13	
2 3 1 Hood: ACGIH (2010), VS-80-11 ^b (Tapered Takeoff) ACGIH - IVM ACGIH - IVM 4.5 4.5 4.527 2.0 [Round Dia] 0.7 0 90° Flat-back Elbow CD3-11 500 90 90.72 4.00 4.79 4.5 4527 2.0 [Round Dia] 0.7 90° Flat-back Elbow CD3-11 500 90 0.072 1 1 0 0 0 0.7 0.7 0	1		_												0.99	0.81	0.80
2 3 1 Hood: ACGIH (2010), VS-80-11 ^b (Tapered Takeoff) ACGIH - IVM ACGIH - IVM 4.5 4.5 4.527 2.0 [Round Dia] 0.7 0 90° Flat-back Elbow CD3-11 500 90 90.72 4.00 4.79 4.5 4527 2.0 [Round Dia] 0.7 90° Flat-back Elbow CD3-11 500 90 0.072 1 1 0 0 0 0.0 0.72 1 0 0 0 0.7 0 <t< td=""><td>tion 1 To</td><td>otal</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.25</td></t<>	tion 1 To	otal															2.25
2 3 1 90° Flat-back Elbow CD3-11 500 90 0.072 Image: Constraint of the state of				Hood: ACGIH (2010), VS-80-11 ^b (Tapered	1000											0.40	
2 3 1 90° Flat-back Elbow CD3-11 500 90 0.072 Image: Constraint of the stamped of the s				Duct	CD11-1				4000		4.79	4.5	4527	20	[Round Dia]		1.33
45° Die Stamped Elbow CD3-3 0 0 0 Wye, branch: Ds=6 in Dc=7.5 in., ED5-1 0 0 0 0				90° Flat-back Elbow	CD3-11					ļ.			2			0.09	
Elbow CD3-3 0. Wye, branch: Ds=6 in Dc=7.5 in., ED5-1 0. 0.	2	3	1	90° Flat-back Elbow	CD3-11	500	90	0.072								0.09	
Ds=6 in Dc=7.5 in., ED5-1 0.					CD3-3											0.12	
				100030-0010000-0000-0000000	ED5-1											0.34	
									1						1.22	1.04	1.27

Example – Spreadsheet Calculate Sizes and Pressure Losses SI

Sections 1 and 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
uo	t	Per		ASHRAE Fitting Code	Air Qty, aL/s	Temp., °C	Density, Kg/m³	Minimum Velocity, m/s (Table 2- 1)	Maximum Duct Area (m ²)	Maximum Duct Dia., D , , mm.	Duct SizeD (₩×H,A ×a),mm	Actual Velocity, m/s	Duct Length, m	Velocity Pressure, pv, Pa	Loss Coef- ficient CO	Δр., Р
Section	Parent	Brother	Fitting Description		-70					Source	· · · · · · · · · · · · · · · · · · ·					~
01				DFDB	Dra v ing	Drawing	DFDB	Round IDCS	Q/V	$\sqrt{4} Ad/\pi$	Round Down	DFDB	Drawing	DFDB	ACGIH or DFDB	Σ
			Hood: ACGIH, VS-80-19°	ACGIH-IVM										2 	0.25	
	1 1		(72.8)73331 A.B. A.B. A.B. A.B.	CD11-1				17.5	0.0216	165.84	152	20.8	11.6	[Round Dia]		384
	3	2		CD3-11	378	32	1.147						1		0.08	
			Ub= 152 mm. Uc= 152	: ED5-6	- Andre	92 3 2700	010000								0.61	
	L'	8 K.	Wye, main: Ds=152 mm.: Dc=191mm., Db=114 mm	ED5-1										4	-0.13	
1							8	2	S			0	8	249	0.81	201.
ion 1	Total						**									585
			Hood: ACGIH (2010), VS-80-11 ⁶ (Tapered Takeoff)	ACGIH - IVM											0.40	
	1 1	1	Duct	CD11-1				20	0.0118	122.57	114.0	23.1	6.1	[Round Dia]	o	35
	1			CD3-11				5	ŝ.		1	8	ò.		0.09	
2	3	1	90" Flat-back Elbow	CD3-11	236	32	1.147			Î.	1	Ĩ	72	8	0.09	
	1		45• Die Stamped Elbow	CD3-3											0.12	
			Wye, branch: Ds=152 mm, Dc=191 mm, Db=114 mm	ED5-1											0.34	
								-						306	1.04	318
ting 2	Total															

Example – Spreadsheet Calculate Sizes and Pressure Losses I-P Sections 3, Collector and 6

													1.1				
Trease and the second			Duct	CD11-1					4000		7.72	7.5	4237	30	[Round Dia]	0.94
3	Collector					1300	90	0.072									
	-														1.07	0	0.00
Section 3 T	otal		L												1.07	0	0.00
300001 5 1			Collector														3
			Concetor	1		<u> </u>			<u> </u>		I				1		<u> </u>
			Duct	CD11-1, siz water/100 ft					•		-	13	1410	15	[Round Dia]	0.03
6	Fan	-	Bellmouth (collector to duct): D1=18 in., Ho=120 in., Wo =72in., bellmouth radius=4	ER2-1, Los	s Coefficient	1300	90	0.072								0.03	
			Transition to fan inlet: D1=13 ¼ in., Do=18 in., L=24 in. (θ = 12°)	, ED4-1												0.17	-
															0.03	0.20	0.01
Section 6 T	otal																0.04
Path Total	Pressure Lo	SS:															
	Tominut		D-#						Path	Total Pressur	e Losses					Path Total Pressure	Imbalance
	Terminal		Path							(in. water)						(in. of water)	(in. of water)
Hood			1-3-Collector-6		2.25+0.94+3.0	0+0.02										6.23	0.35
Hood			2-3-Collector-6		2.60+0.58+3.0	0+0.02	8									6.57	0
																	-
aACGIH (20	010) Chippin	a and Grind	ing Table: 48 in. (W) by 3	6 in. (H) open	ina.										5.3%	dif	

ACGIH (2010) Chipping and Grinding Table: 48 In. (W) by 36 In. (H) opening.

^bACGIH (2010) Grinding Wheel Hood: 18 in. wheel diameter, 3 in. wheel width.

Example – Spreadsheet Calculate Sizes and Pressure Losses SI Sections 3, Collector and 6

/																		4
<u> </u>		1	Duct	CD11-1		1			20	0.0307	197.71	191	21.4	9.1	[Rour	ind Dia]		239.9
3	Collector		- <u></u>			614	32	1.147									1 1	
1 '	1	1	· ·	1	ļ	1		,									1 1	
															2	263	0	0.00
Section 3 T	otal																	239.90
			Collector														, y	746.5
			Duct	CD11-1, si	ize at 1.64 Pam, ε= .12mm				<i>.</i>		-	332	7.1	4.6	[Rour	ind Dia]		7.5
6	Fan	-	Bellmouth (collector to duct): D1=457 mm., Ho=3048mm, Wo =1829mm, bellmouth radius=100 mm		ss Coefficient based on	614	32	1.147									0.03	
'			Transition to fan inlet: D1=337 mm, Do=457 mm, L=610 in. (θ = 12°)) ED4-1													0.17	
															2	29	0.20	5.80
Section 6 T	otal																	13.30
Path Total F	Pressure Los	SS:																
	No. of Concession, Name		12/20/2017						Path Total	Pressure Los	osses					Path Total	Pressure	Imbal nce
Terminal Path										(Pa)						(Pa	a)	(Pa)
Hood			1-3-Collector-6		585.7 +239.9 +746.5 +13	13.3										1585	i <mark>5.4</mark>	85.5
Hood			2-3-Collector-6		671.2 +239.9 +746.5 +13	13.3										1670	/0.9	0
			<u> </u>													·		

^aACGIH (2010) Chipping and Grinding Table: 1219 mm. (W) by 914 mm (H) opening.

^bACGIH (2010) Grinding Wheel Hood: 457 mm wheel diameter, 76 mm wheel width.

5.1% dif

Example – Spreadsheet Calculate Sizes and Pressure Losses

Example – Spreadsheet Calculate Sizes and Pressure Losses

Balancing with Airflow

$$Q_c = Q_L \left(\frac{\Delta p_H}{\Delta p_L}\right)^{1/2}$$

 Q_c = the Corrected Airflow for Balancing, cfm (L/s) Q_L = the Original Airflow in the Section that Needs Balancing, cfm (L/s) Δp_H = Higher Pressure Loss in the Section to be Balanced Against , in. wg (Pa) Δp_1 = Lower Pressure Loss in the Section to be Balanced Against , in. wg (Pa)

Example – Spreadsheet Calculate Sizes and Pressure Losses Balancing with Airflow

Example Balancing with Airflow – Increase Airflow in Section 1 to Balance the System.

		I-P			SI	
Section 2	ΔP _H =	2.60	in wg	ΔP _H =	671.2	Pa
Section 1	$\Delta P_L =$	2.25	in wg	$\Delta P_L =$	585.7	Pa
	Q1 =	800	cfm	Q1 =	378	L/s
	New Q ₁ =	860	cfm	New Q ₁ =	405	L/s

$$Q_c = Q_L \left(\frac{\Delta p_H}{\Delta p_L}\right)^{1/2}$$

Balancing with Airflow

Example – Revisiting the Spreadsheet Calculate Sizes and Pressure Losses Sections 1 and 2, I-P

Constant Ve			ample - Balancing	Keep sizes, in	crease	flow rate										20
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Section	ant	Brother	End - Development	ASHRAE Fitting Code	Air Qty, acfm	Temp., •F	Density, Ibm/ft3	Minimum Velocity, fpm (Table 2- 1)	Maximum Duct Area (in²)	Maximum Duct Dia., D,, in.	Duct Size D (₩ x H, A x a), in.	Actual Velocity, fpm	Duct Length, ft	Velocity Pressure, pv, in. of water	Loss Coef- ficient CO	∆p _t , in. of water
ect	Parent	frot	Fitting Description							Source						
0	-	Ш		DFDB	Draw ing	Drawing	DFDB	Round IDCS	Q/V		Keep Size	DFDB	Drawing	DFDB	ACGIH or DFDB	Σ
			Hood: ACGIH, VS-80-19°	Appendix C, Figure C-1											0.25	
			Duct	CD11-1				N/A	N/A	N/A	6	4380	38	[Round Dia]		1.76
1	3	2		CD3-11	860	90	0.072								0.08	2
5000	2000		Capped wye with elbow: Db=6 in Dc=6 in.	ED5-6			1000000								0.61	
			Wye, main: Ds=6 in Dc=7.5 in., Db=4.5in.	ED5-1											-0.13	
											6	2.4		1.15	0.81	0.93
Section 1	Total															2.69
°			Hood: ACGIH (2010), VS-80-11 ⁶ (Tapered Takeoff)	Appendix C, Figure C-2											0.40	
			Duct	CD11-1				4000		4.79	4.5	4527	20	[Round Dia]		1.33
				CD3-11											0.09	
2	3	1	90' Flat-back Elbow	CD3-11	500	90	0.072								0.09	
			45• Die Stamped Elbow	CD3-3											0.12	
			Wye, branch: Ds=6 in., Dc=7.5 in., Db=4.5in.	ED5-1											0.34	
														1.22	1.04	1.27
Section 2	Total								2			72	с			2.60

Balancing with Airflow

Example – Revisiting the Spreadsheet Calculate Sizes and Pressure Losses Sections 1 and 2, SI

Constant V	elocity Duct	Design Exa	ample - Balancing	Keep sizes, increase	flow rate											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ion	ent	her	Fitting Description	ASHRAE Fitting Code	Air Qty, aL/s	Temp., °C	Density, Kg/m³	Minimum Velocity, m/s (Table 2- 1)	Maximum Duct Area (m²)	Maximum Duct Dia., D,, mm.	Duct Size D (₩ x H, A x a), mm	Actual Velocity, m/s	Duct Length, m	Velocity Pressure, pv, Pa	Loss Coef- ficient CO	∆p _t , Pa
Section	Parent	Brother	ritting Description						9	òource			2			22
s	_	E		DFDB	Dra v ing	Draving	DFDB	Round IDCS	Q/V	5	Keep Size	DFDB	Draving	DFDB	ACGIH or DFDB	Σ
			Hood: ACGIH, VS-80-19°	Appendix C, Figure C-1											0.25	
			Duct	CD11-1				N/A	N/A	N/A	152	22.3	11.6	[Round Dia]		458.1
1	3	2	90' Flat-back Elbow	CD3-11	405	32	0.072								0.08	
~~	2007201		Capped wye with elbow: Db=152 mm. Dc=152 Wye, main: Ds=152	ED5-6			0.0000000								0.61	
			Wye, main: Ds=152 mm Dc=191 mm., Db=114 mm	ED5-1											-0.13	
									8					300	0.81	210.0
Section 1	Total															701.1
			Hood: ACGIH (2010), VS-80-11 ⁶ (Tapered Takeoff)	Appendix C, Figure C-2											0.40	
			Duct	CD11-1				N/A	N/A	N/A	114.0	23.1	6.1	[Round Dia]	2	353
				CD3-11			10000								0.09	
2	3	1	90" Flat-back Elbow	CD3-11	236	32	1.147								0.09	
			45• Die Stamped Elbow	CD3-3											0.12	
			Wye, branch: Ds=152 mm, Dc=191 mm, Db=114 mm	ED5-1											0.34	
									4					306	1.04	318.2
Section 2	Total											-				671.2
			•-		•		•				•		•			

Balancing with Airflow

Example – Spreadsheet Calculates Sizes and Pressure Losses (I-P) Sections 3, Collector and 6 (revised for balancing)

			Duct	CD11-1					4000		7.90	7.5	4443	30	[Round Dia]	1.08
3	5	4	and definition of the			1360	90	0.072								3.04	
		-				1000	50	0.072									
				-					7								
															1.18	0	0.00
Section 3 Total												1.08					
			Collector												3		
6	Fan		Duct	CD11-1, siz water/100 ft	ze at 0.2 in. t, ε = 0.0004 ft			0.072	ġ.		- 1	13	1475	15	[Round Dia	1	0.034
			Bellmouth (collector to duct): D1=18 in., Ho=120 in., Wo =72in., bellmouth radius=4	ER2-1, Loss Coefficient based on V ₁		1360	90									0.03	
			Transition to fan inlet: D1=13 ¼ in., Do=18 in., L=24 in. (θ = 12°)	ED4-1												0.17	
															0.131	0.20	0.03
Section 6 Total													0.06				
Path Total F	Pressure Lo	SS:															
Terminal			Path	Path Total Pressure Losses												mhalance	
			Paul		(in. water)											(in. of water)	(in. of water,
Hood			1-3-Collector-6		2.69+1.08 +3.00+0.06											6.83	0.00
Hood			2-3-Collector-6		2.60+1.08+3.0	2.60+1.08+3.00+0.06										6.74	0.09
											1.36	7					

Balancing with Airflow

Example – Spreadsheet Calculates Sizes and Pressure Losses (SI) Sections 3, Collector and 6 (revised for balancing)

	['		Duct	CD11-1	/	,		· · · · · · · · · · · · · · · · · · ·	N/A	N/A	N/A	191	22.4	9.1	[Rour	nd Dia]		272.2
3	6	6			,	641	32	1.147									4 7	
	1 '				, j	1		'									4 /	
					!										3/	301	0	0.00
Section 3 Total																272.2		
		-		Collector											r	746.5		
																'		
	['		Duct	CD11-1, si	size at 1.64 Pam, ε = .12 mm	[125		-	332	7.4	4.6	[Rour	nd Dia]		8.5
6	Fan		=1829mm, bellmouth radius=100 mm	ER2-1, Los	oss Coefficient based on	641	32	1.147									0.03	
	<u> </u>		Transition to fan inlet: D1=337 mm, Do=457 mm, L=610 in. (θ = 12°)	ED4-1		<u> </u>		'									0.17	
	'														3	33	0.20	6.6
Section 6 Te	otal	<u></u>							<u></u>									15.1
Path Total P	Pressure Los	SS:																
Terminal			Path			Path Total Pressure Losses P												Imbalance
Terminal			I dui			(in. water)												(Pa)
Hood			1-3-Collector-6		701.1 +272.2+746.5 +15	5.1									/	177	734.9	0.0
Hood			2-3-Collector-6	1	671.2 +272.2+746.5 +15	5.1									<u> </u>	170	705.0	29.9
					<u> </u>											0.007		

Example – Spreadsheet Calculate Sizes and Pressure Losses, I-P

Imbalance Corrected

Example – Spreadsheet Calculate Sizes and Pressure Losses, SI

Imbalance Corrected

Summary

- ✓ Equal Friction Designs for 1000 to 2000 fpm (5 10 m/s) Should be Used to Size Sections not Carrying Fumes or Particulates
- ✓ Constant (Transport) Velocity Should be Used to Size Other Sections
- ✓ Get Hood Loss Coefficients from the Industrial Ventilation Manual from ACGIH
- ✓ Efficient Fittings Should be Used
- ✓ Consider Increasing Airflow in Non-Design Legs to Help Balance the System. Don't use Dampers or Blast Gates for Balancing
- ✓ Smaller Duct Sizes or Less Efficient Fittings can also be Used After the Initial Design to help Balance the non-design legs, which should Lower First Cost

Thank You

Questions?

Patrick Brooks, P.E. pbrooks@smacna.org